
8 The Delphi Magazine Issue 59

Effective Delphi Class Engineering
Part 2: Welcome To The Machine
by David Baer

In this second instalment of our
series, we are going to put

Delphi’s object machinery under a
magnifying glass. We’ll be examin-
ing such things as memory
management, method calling
protocols and various other
compiler-related issues.

There’s a good analogy to the
focus of this article. Everyone
knows that pieces of wood can be
structurally joined with nails and a
hammer. To a lay person, any
bunch of nails the right size can be
used, right? But a professional
carpenter knows there are many
kinds of nails, and using an inap-
propriate type will at best make a
job take longer. At worst, the long-
term durability of the construction
can be compromised.

Likewise, one can learn to write
object oriented Delphi code with-
out knowing some of the details
we’ll be examining. But under-
standing this information can
make your efforts more efficient in
the short term and more effective
in the long term. So, grab those
hammers and we’ll get started.

Homework
Read the fact-filled manual (the
Object Pascal Language Guide).

Object Pascal is not a complex
language in comparison to some
others. Nevertheless, there are
hundreds of small details which, if
you know and pay attention to
them, can lead to more concise,
efficient, durable and readable
code. Certainly, you can write
extensive amounts of code only
using about a third of the language,
but you won’t know what you’re
missing until you survey all that’s
available. We’ll be covering some
of this material that’s particularly
pertinent to classes/objects, but
there’s much more that is worth
knowing. The OPLG is available in
Adobe Acrobat Reader format on

the Delphi installation CD and also
on Borland’s website.

But reading the OPLG isn’t
enough. You should also acquaint
yourself with all the functions and
procedures available from Delphi.
Knowing the many and diverse ser-
vices available from these routines
can save you a lot of coding. Unfor-
tunately, the OPLG doesn’t present
this information. For that you’ll
need to explore the help files, and
you can also learn quite a lot by
reading the code and (oh, my
goodness!) the many comments
contained in the Sysutils unit.

An even better course of enlight-
enment might be to read Ray
Lischner’s Delphi In A Nutshell
(Wiley, ISBN: 1565926595).
Although I’ve yet to acquire my
own copy, I’ve seen the table of
contents. It looks to be the perfect
source for the kind of information
I’m recommending you learn and,
as a bonus, it’s quite reasonably
priced (at least in the US).

Why am I so adamant that this is
important? There are just too
many reasons to fully explain. So
let me enumerate just a few:
➢ Understanding the scope of

names (of variables, methods,
etc) will help you to write more
comprehensible code.

➢ Knowing the details of the
string data type in terms of
memory allocation and refer-
ence counting will help you un-
derstand what makes for
efficient code when doing char-
acter data manipulation. In the
event you need to code direct
Windows API calls, this
knowledge is indispensable.

➢ Fortunately, Delphi doesn’t re-
quire the use of pointers in
most situations, but under-
standing how they work can
turn slothful routines in perfor-
mance critical sections of code
into speed demons.

➢ You sometimes need to code
classes for which huge
numbers of instances must be
created; knowing how data
types are allocated can help
you conserve lots of memory.

➢ Knowing the effect of using
const in method declarations
can improve performance.

The list is extensive and these are
just a few examples. So, just do it:
read the manual!

Units
Organize your units with attention
to what’s visible to the outside
world, and (sometimes more
importantly) what isn’t.

To begin your class writing
efforts, you will of course need to
understand how a class is declared
and supplied with an implementa-
tion (ie, the code for the class
methods). This is quite straightfor-
ward and we’ll get to it next. But, in
addition, you’ll need to under-
stand the layout of a unit. As I
pointed out last time, Delphi’s IDE
can let you create some sophisti-
cated applications without ever
worrying about these details.
While many of you already under-
stand this, I want to remind those
who haven’t given it any thought.

A class declaration is a simple
construct. Listing 1 presents a unit
containing several small class dec-
larations and implementations.
Examine the declaration of
TMyClass and note that we list both
class variables (sometimes refer-
red to as member data items) and
class methods (procedures and
functions) under private and
public.

You may also declare members
(data items or methods) right after
the TMyClass = class line, but you
should avoid doing so. The visibil-
ity of such items is public (or pub-
lished in some cases, but let’s not
get into that right now).

10 The Delphi Magazine Issue 59

unit MyClasses;
interface
uses SysUtils;
type
TMyOtherClass = class;
TMyClass = class
private
ANumber: Integer;
AString: String;
AnOtherClass: TMyOtherClass;

public
constructor Create;
destructor Destroy; override;

end;
TMyOtherClass = class
private
AnOtherNumber: Integer;

public
end;

var
StompOnMe: Integer;

implementation
var
MyClass: TMyClass;

{ TMyClass }
constructor TMyClass.Create;
begin
inherited Create;
AnOtherClass := TMyOtherClass.Create;
AString := 'The date is ' + DateToStr(Date);

end;
destructor TMyClass.Destroy;
begin
AnOtherClass.Free;
inherited Destroy;

end;
initialization
MyClass := TMyClass.Create;

finalization
MyClass.Free;

end.

The methods Create and Destroy
are special method types, known
as constructors and destructors
respectively. We’ll discuss those
shortly.

Now, let’s talk about the overall
organization of the unit. The exam-
ples in Listing 1 are pretty conven-
tional. We declare the two classes
in the interface section of the unit.
In doing so, they are available for
use by any other unit, including
MyClasses in its uses clause. But
there’s no requirement to do so.
For example, if we had intended
TMyOtherClass to act solely to sup-
port TMyClass, we could have
declared it in the unit’s implementa-
tion section. Doing that would
make it invisible to the outside
world.

But, in this case, we can’t do that,
because TMyClass contains a refer-
ence to TMyOtherClass. Object
Pascal is a one-pass compiler and
demands that types be declared
before they are referenced. In this
example, we could make things
right by declaring TMyOtherClass
first. But what if TMyOtherClass also
referenced TMyClass? They can’t
both be first! Instead, we use the
device known as a forward declara-
tion. We first provide the one-line
declaration of TMyOtherClass, and
provide the full declaration later.

It would be very useful if we
could declare a class in the inter-
face section that privately used an
internal class defined in the imple-
mentation section (that internal
class then being completely out of
sight to users of the ‘owner’ class).
Unfortunately, Object Pascal

➤ Listing 1
demands that a forward class dec-
laration in the interface section
must also have its full declaration
appear in that section. Normally
this is not a huge annoyance, but it
would be nice if the language could
be accommodating in this case.

Class Unit Placement
Place collaborating classes in
separate units.

For all the talk of private and
public so far, we’ve avoided one
important fact. The private mem-
bers of a class are effectively
public to other classes defined in
the same unit. Sometimes this can
be a great benefit, especially where
internal helper classes are
involved. But it can also lead to
unintentional breaches in an
encapsulation strategy.

It’s often far from obvious how a
collection of collaborating classes
should be distributed with respect
to unit assignments. Rather than
trying to define a set of guidelines,
let’s just consider an example from
the VCL.

The unit dbctrls.pas contains a
variety of data-aware visual con-
trols like TDBEdit, TDBCheckbox, etc.
These are related in a sibling-like
fashion. It’s perfectly reasonable
for them to share a unit dedicated
to that ‘theme’. On the other hand,
the db.pas unit contains the defini-
tion of TDataSource and many other
related classes.

The control classes in
dbctrls.pas do not collaborate with
each other, but they do collaborate
with the data source facilities in
db.pas. Size considerations aside
(these are both pretty hefty units
to begin with), it would have been a

mistake to combine the classes in
dbctrls.pas and db.pas into a
single unit. The reason is that it
would be very easy to write code in
a control method that unint-
entionally accesses private mem-
bers in the data source class, or
vice versa.

While this might not badly com-
promise the integrity of the whole
at first, it can make it extremely dif-
ficult to reassign the classes to
separate units later on (as you
might wish to do if a unit starts to
become too large and ungainly to
be manageable).

You can always combine classes
into one unit after they reach a
degree of maturity and stability.
But attempting to go the other way
can reveal a host of unanticipated
dependencies that are difficult to
untangle. Trust me on this one, it’s
a lesson I learned the hard way.

Memory Utilisation
If you understand where your data is
at all times, you’ll keep it (and
yourself) out of trouble.

Let’s continue with Listing 1 to
explore memory allocation issues.
We’ll start with simple variables,
and get to objects in a moment.
You may have noticed that there is
one var item declared in the inter-
face section and another in the
implementation. Now, I’m not pro-
moting the former as good prac-
tice! It should be avoided wherever
possible (the name of that item
might suggest why).

You might be thinking, ‘How can
this be bad practice? Delphi does
it!’ And indeed it does, by placing a
form object reference in interface
when the IDE generates a new

12 The Delphi Magazine Issue 59

form. This is another of those com-
promises Delphi uses to achieve
RAD-ness. The first thing I usually
do with a new form unit is to delete
the reference (and mark the form
as non-auto-create), and I know a
fair number of seasoned Delphi
coders do the same.

In general, global variables invite
abuse, and you’re usually better off
avoiding them. In the grand
scheme of things, Delphi does
expose a few of these (apart from
the aforementioned form refer-
ences). But these are class refer-
ences like Application and Screen,
which is entirely justifiable. Your
program code frequently needs
access to global information.
Encapsulating that information in a
class is a far better way to control it
than just leaving it exposed for
abuse. A global variable cannot be
read-only to the general public. A
class data member can be
(through the use of properties, the
subject of the next instalment).

One very important point to con-
sider is that var items declared at
the unit level occur exactly once in
an executing application. You
could create multiple instances of
TMyClass and each instance would
have its own allocation of its data
members. But var items (and const
variables) declared at the unit level
(as distinct from var items
declared in a procedure or func-
tion) are singletons.

Unlike var items in the interface
section, var items in the implemen-
tation section are not nearly so
dangerous. Indeed, they can be
quite useful. Object Pascal pro-
vides no form of class variable,
something available in certain
other OO languages. A class vari-
able is one that also exists as a sin-
gleton in an executing application,
but may only be accessed via a
class or object reference. As such,
these may be private as well, and
can be very useful in numerous
situations. But an implementation
var item serves this purpose
almost as well.

Before we look at object memory
issues, let’s briefly discuss where
data resides in general. Let’s keep
it simple for a moment and just
consider simple variables (like

4-byte integers). A variable will
exist in one of two places: on the
heap or on a stack. The heap is just
that: a heap of memory, which is
used for all data storage except for
those items using a stack.

Stacks are a little more compli-
cated. For every thread, a contigu-
ous block of memory is available
for use in the calling and executing
of procedures and functions.
These are true stacks in that they
grow when a procedure is called,
grow some more when that proce-
dure calls another, shrink when
the called procedure is finished,
etc. There are three basic uses for
stack storage: parameters passed
to a called procedure, storage for
var items in functions and proce-
dures, and working storage for
things like intermediate results in
expression evaluations.

A point of interest here is var
items in procedures and functions.
You can’t code for very long in
Delphi before you realize that
these are not initialised when a
procedure is entered. An excep-
tion to this is reference counted
variables like strings (which must
be initialised if reference counting
is to work in the first place).

Turning our attention back to
the heap, the good news is that
most items residing in the heap are
initialised to binary zeroes. This
includes unit level var items and
class data members (but does not
include dynamically allocated
records, so beware).

Now, before we tie this all
together, let’s consider a couple of
additional things. The first is the
memory allocation for strings.
String variables are four-byte
pointers, which
point to a block
of data contain-
ing information
about the
string, as well
as the string
data itself. That
block consists
of three contig-
uous 4-byte
pieces (alloca-
tion size, refer-
ence count and
current length)

followed by the string data. This
block will always be in the heap
(although multiple string variables
might point to this chunk, courtesy
of reference counting). A string
variable actually points to the start
of the string data.

An object reference variable is
just a 4-byte pointer to the actual
instance data. The object refer-
ence variable may be either in a
stack or in the heap, depending on
where it is declared. When an
object is created, a block of stor-
age for all its data members is
acquired in the heap (and helpfully
initialised to binary zeroes). The
data members occupy contiguous
storage, which is preceded by one
4-byte pointer to a block of class
information. One such block of
class information exists for each
class type in the compiled pro-
gram. For now, we’re not going to
get into this subject, but we’ll look
at it in detail in a later instalment.

So, the data members of a class
instance occupy contiguous stor-
age, right? Well, not exactly. The
basic data members of the class
instance do, but if these data mem-
bers are strings, for example, or
references to other class
instances, the composite collec-
tion of data may reside in many
places. Understanding this is a key
to understanding what’s involved
with object assignment. We’ll look
at that subject below.

Figure 1 shows the main heap
allocations that are happening in
MyClasses. In that unit, one
instance of TMyClass is created in
the intialization section for the

StompOnMe:StompOnMe:

MyClass:MyClass:

Class Info.Class Info.

AnOtherClassAnOtherClass

ANumberANumber
AStringAString

Class Info.Class Info.
AnOtherNumberAnOtherNumber

TMyClassTMyClass
InformationInformation

TMyOtherClassTMyOtherClass
InformationInformation

Cnt: 1 Lng: 21 The date is 4/30/0000/0Cnt: 1 Lng: 21 The date is 4/30/0000/0

THE HEAPTHE HEAP

➤ Figure 1

July 2000 The Delphi Magazine 13

purposes of illustration. TMyClass
creates an instance of TMyOther-
Class during its creation process,
so we have two classes in exis-
tence, as illustrated.

Constructors
Give your objects a good start in life
with well-designed constructors.

There is a special type of class
method, called a constructor,
which is used to create a class
instance. Calling the constructor
creates a class instance (ie, an
object). Usually, the reference
pointer returned from the call is
assigned to a class reference vari-
able. Constructors are convention-
ally named Create, but they can be
given any name you wish (not that
you’d want to buck convention
without a good reason).

You do not always need to pro-
vide a constructor for your class
implementation. If your class is
simple and contains only simple
data types as member data items,
the Delphi object machinery takes
care of everything for you. You can
think of this (for now anyway) as a
default service which allocates the
necessary memory block for your
member data.

More complex objects may need
some custom initialization to be
performed when being created.
For example, if the object uses an
internal helper class, it’s often
appropriate to just create an
instance of the helper class during
its own creation. You can see this
being done in the constructor for
TMyClass.

In examining that method, you’ll
see a call to inherited Create.
Understanding its purpose
requires an explanation of class
inheritance, a topic we’ll be cover-
ing in a future article. For now, let
me just suggest that you always
supply a call to inherited Create as
the first statement in your con-
structor.

There is only one situation I
know of where the ‘inherited call
first’ rule will get you into trouble:
in a TThread descendant, where
the thread is created as non-
suspended. In that case, the inher-
ited call needs to be the last
statement in the constructor.

Destructors
Let your objects experience a
dignified end with appropriate
destructors.

The final moments of an object’s
life may require wrap-up process-
ing, which is the role of the
destructor. For example, if your
initialisation created an internal
object, it’s normal to destroy that
internal object in the destructor.
But, like constructors for simple
classes, you don’t always need to
provide a destructor. Where there
is no internal cleanup needed, the
default services will take care of
de-allocating the storage block
used for member data.

In TMyClass you’ll see a call to
inherited Destroy in the destruc-
tor. Once again, just take it on faith
for the moment that you should
always include a line like this as the
last statement of all destructors.
Destructors must be named
Destroy, and they must always be
declared with the override direc-
tive (an explanation will have to
wait for another instalment).

A perennial point of confusion
for neophyte Delphi developers is
that of Free versus Destroy. Code
that needs to destroy an object
should always call Free, not
Destroy, as can be seen in the
finalization section of MyClasses.
Free offers a shortcut that saves a
lot of repetitive coding. Attempting
to destroy an object that was never
created to begin with must be
avoided (unless you like access
violations). Free first tests the
object reference for nil and then
calls Destroy, but only if the refer-
ence is not nil. This isn’t an iron-
clad protection mechanism. There
are many ways to get into trouble
with inappropriate destruction
activity, but it offers some respite.

For now, just consider Free to be
another default service of the
object machinery. Although you
will frequently need to supply a
Destroy method, you should never
supply a Free method implementa-
tion.

Self-Awareness
Class methods execute in a very
self-ish manner; which is the main
point, actually!

Your class method code will nor-
mally make reference to the
member data of a class instance.
How does the executable know
which instance is being refer-
enced? It’s not obvious by examin-
ing the source code, because the
compiler is supplying a most
helpful invisible assist.

When coding a method call, you
do it with a statement that includes
a class reference variable, fol-
lowed by a period, followed by the
method name (and parameters, if
appropriate). What’s actually hap-
pening is quite straightforward.
The compiler-generated code
appends that class reference as a
final ‘invisible’ parameter to the
call. That reference is a pointer to
the class instance’s data member
storage block.

Code in a method that accesses
member data does so by simply
naming the member data variable.
The generated code uses the
hidden instance reference (again,
it’s just a pointer) to locate the
item in memory. The pointer value
can be explicitly accessed in
method code by using the
reserved word Self. This can occa-
sionally be necessary if name colli-
sions occur. For example, when a
method parameter is named Thing
and a class data member has the
same name, use of the identifier
Thing in the method code will refer-
ence the parameter. To reference
the class data member, you can
use Self.Thing. In my opinion,
using different identifiers is a
much better approach.

One final point: it is not the
responsibility of your class to pro-
tect from erroneous use by class
clients invoking methods with bad
object references. For example,
this line of code:

if Self = nil then Exit;

is a pathetic exercise in futility.
Your class cannot protect itself
against this kind of misuse, so
don’t even bother to try.

Creating And
Destroying Objects
You don’t have room service: you
need to serve up your own objects.

14 The Delphi Magazine Issue 59

You don’t have maid service: you
are expected to clean up after your-
self (some of the time, anyway).

In Object Pascal, objects must
always be explicitly created.
Novice users may be forgiven for
not realizing this rather obvious
necessity since, once again,
Delphi’s RAD capabilities nicely
hide this requirement. After all,
because all components are class
instances we don’t have to write
Create calls for the components in
our code, do we?

It is true that all component
instances are OP objects, but the
VCL provides the creation services
in the case of components on
forms and data modules when
those forms and data modules are
created. The cleverly engineered
input streaming mechanism
automates this for us.

But, for all other cases, explicit
creation is a necessity. This
applies to users of your classes,
and it applies to you when your
class uses internal classes. For
small objects, or objects that will
always be needed, it’s often
convenient to simply create those
internal classes right in the con-
structor. Occasionally, an internal
class that is ‘expensive’ to create
(using large amounts of memory or
having a lengthy creation time) is
only occasionally needed. In this
case, deferring the creation of that
internal class until needed is a
better approach.

You are also generally expected
to free the objects you create. I sus-
pect that many seasoned develop-
ers approach this like I do: if I write
a statement that creates an object,
I immediately go to the appropriate
place in the code and write the call
to Free on that object. For classes
using internal classes, freeing the
instances of the internal class is
usually best done in the destruc-
tor. In fact, if a class uses even one

internal class, a destructor will
almost always be required, if for no
other purpose than ensuring the
free takes place.

Failing to free objects results in a
memory leak (ie, unused but
non-reclaimable memory left in the
heap). Memory leaks are not
always insidious. If an object is to
live right up to the end of the exe-
cution of the program, failing to
free it does no harm. The result is
sometimes called a benign leak.
The OS will reclaim the storage of
abandoned object when the pro-
gram is terminated, so there is no
harm done.

Nevertheless, a good case can be
made to explicitly free all objects.
There are several commercial and
freeware utilities available that can
detect memory leaks and I highly
recommend that you get in the
habit of using one. If you do, then
you’ll see the wisdom of avoiding
even benign leaks. They may cause
no performance degradation, but
they still show up in a leak detector
report. As such, their presence can
make identifying true leak condi-
tions more difficult.

There’s a common case in which
you are relieved of the responsibil-
ity of freeing objects. Some classes
offer ownership services, wherein
they take on the responsibility of
freeing objects when they them-
selves are destroyed. ‘Owned’
objects have something else look-
ing after their cleanup, by VCL con-
vention. Component classes are
the main example of this. The
TComponent constructor has a
parameter named AOwner, which is
a good clue that this service is
being provided.

Additionally, some container
classes offer this cleanup service.
The TObjectList class (in the
source file contnrs.pas) is an exam-
ple. It has a property, OwnsObjects,
which may be set to True to
indicate that the auto-freeing
service is in effect.

One final point: if it’s a good
practice to free objects, it’s a terri-
ble one to get sloppy and attempt
to free them more than once. Doing
so will inevitably result in an
access violation. If there’s a danger
of executing a Free more than
once, make certain you set the
object reference to nil immedi-
ately after the Free call (or use
Delphi 5’s FreeAndNil routine to do
both operations in a single
statement).

Alternate Constructors
Be creative and use multiple
constructors where appropriate.

Supplying a single constructor
for most classes will usually be all
that’s needed. But there’s no
restriction on having multiple con-
structors, and these can be quite
useful in some situations.

In particular, you may wish to
supply a simple constructor that
gets the basic object set up in a
largely non-initialised state. You
may also then supply additional
constructors with parameters that
may be used to specify initial
values of data members. This pro-
vides a nice flexibility to either
create objects for later use (using
the simple constructor) or objects
that are immediately usable after a
single call to the constructor.

You have two choices in provid-
ing multiple constructors. Number
one is to give each constructor a
unique name, and that’s that. Your
second choice is to name them all
the same (Create would be a very
good choice in this case), and use
the overload directive. Listing 2
illustrates the two alternatives in
action.

Object Replication
You don’t have a copy machine:
when cloning objects, you need to
provide the cloning code in your
class.

I think the main benefit of under-
standing memory usage in object
creation, which we spent more
than a little time on above, is that
you can readily grasp the require-
ments for copying objects. To
begin with, it will be easy to avoid a
frequent misconception of
neophyte Delphi practitioners.

...
public
constructor Create;
constructor CreateInitialized(Count: Integer; const Text: String);

...
public
constructor Create; overload;
constructor Create(Count: Integer; const Text: String);
overload;

➤ Listing 2

July 2000 The Delphi Magazine 15

Specifically, the code in Listing 3
assigns the pointer of one object
reference to another. That’s all! It
does not get you a second instance
of the object. You have nothing
more than two object references
pointing to the same instance of
the object. If you need to offer repli-
cation services, you must provide
one or more methods to perform
the value assignments.

So, why can’t the compiler be
smarter and provide some auto-
matic mechanisms to do this sort
of thing? The reason is that it
cannot possibly know how much is
to be copied. If we have a simple
class that contains, for example,
nothing but integer data members,
then this would be no problem. But
objects frequently contain internal
objects. OK, that makes the job

harder, but you could still argue
that the compiler should offer this
sort of service.

However, objects also fre-
quently contain references to
external objects. If we clone an
object, do we want to copy the ref-
erence only (two objects now
pointing to a shared single
instance of the referenced object),
or do we want to create a clone of
the referenced object? The answer
will depend on circumstances.
Even if the compiler was smart
enough to generate this extremely
tricky code, it cannot possibly
know which of two possibilities is
desired.

On the other hand, as a class
designer, you should have a pre-
cise idea about what a copy opera-
tion means. Like it or not, it’ll be up
to you to write the code to make it
happen.

By convention, copying routines
are named Assign in Delphi classes
(not that’s there’s any language
requirement for this name). An
Assignmethod will typically supply
a single parameter with which to

var
MyObject: TMyClass;
MyOtherObject: TMyClass;

...
MyObject := TMyClass.Create;
MyOtherObject := MyObject;

➤ Listing 3

specify the ‘from’ object, and the
method will be called on a refer-
ence to the ‘to’ object.

In practice, Assign can be used
to not only clone objects, but to
copy common data between
objects of differing types. We will
return to this subject in a later
instalment, when we delve into the
subject of polymorphism. You’ll
be amazed at the wonderful things
you can accomplish with Assign.

Next Time
We’ll undertake a thorough exami-
nation of one of Object Pascal’s
most elegant features: properties.

David Baer is Senior Architectural
Engineer at StarMine. Yes, that’s
right, he’s got a new job at an
exciting startup in San Francisco
(but he wants to assure everyone
that he has not been dot-
commandeered). Contact him at
dbaer@starmine.com

	Homework
	Units
	Class Unit Placement
	Memory Utilisation
	Constructors
	Destructors
	Self-Awareness
	Creating And Destroying Objects
	Alternate Constructors
	Object Replication
	Next Time

